[image: image18.png]

SUM-010515

2001/05/15
TAPI CS1000 TSP
 User Manual & Installation Guide (SUM)
[image: image19.jpg]
 Digital Linker
Table of Contents

11. OVERVIEW

11.1 OBJECT

22. Environment & Installation

22.1 System Requirements

22.1.1 Server System

22.1.2 Client System

22.2 How to Gain License Key

32.3 Operation Environment

32.3.1 Local TcoreTSP

42.3.2 Remote TcoreTSP

52.4 Installation

52.4.1 TcoreTSP_Server

102.4.2 TcoreTSP_Client

152.5 Environment Setting

152.5.1 Registration in Control Panel

182.5.2 Recording in Registry

203. TcoreTM (Telephony Manager) User Manual

203.1 TcoreTM Definition

203.2 License Authentication

213.3 TcoreTM Start

223.3.1 TcoreTM Configuration Information

233.4 TcoreTM – Options Items

243.5 TcoreTM – Devices Items

243.5.1 Processing Procedures

264. TAPI Function List

294.1 lineAddProvider

304.2 lineAnswer

314.3 lineCallbackFunc

324.4 lineClose

334.5 lineCompleteTransfer

344.6 lineConfigDialog

354.7 lineConfigDialogEdit

374.8 lineConfigProvider

384.9 lineDeallocateCall

394.10 lineDevSpecificFeature

404.11 lineDial

414.12 lineDrop

424.13 lineGetAddressCaps

434.14 lineGetAddressID

444.15 lineGetAddressStatus

454.16 lineGetCallInfo

464.17 lineGetCallStatus

474.18 lineGetDevCaps

484.19 lineGetID

494.20 lineGetLineDevStatus

504.21 lineHold

514.22 lineInitializeEx

534.23 lineMakeCall

554.24 lineNegotiateAPIVersion

564.25 lineOpen

594.26 lineRedirect

604.27 lineRemoveFromConference

614.28 lineSetLineDevStatus

624.29 lineSetupConference

644.30 lineSetupTransfer

654.31 lineShutdown

664.32 lineSwapHold

674.33 lineUnhold

685. TAPI Event List

695.1 LINE_APPNEWCALL

705.2 LINE_CALLSTATE

725.3 LINE_DEVSPECIFICFEATURE

1. OVERVIEW

This manual is a guide for users of TcoreTSP (Tcore Telephony Service Provider).
1.1 OBJECT

This user manual discusses TcoreTSP system requirements, TcoreTSP system operation environment, TcoreTSP system configuration, and TcoreTSP system installation, including TAPI function and event available for supporting TAPI application development. The documents function as a reference manual to develop application needed to utilize TcoreTSP.

2. Environment & Installation

2.1 System Requirements

2.1.1 Server System

· OS : WindowsNT 4.0 SP6 or greater, Windows2000 Server SP1 or greater.

· TAPI Version : Ver 2.1 or greater

2.1.2 Client System

· OS : Window 95, Windows98, Windows2000 Professional or greater

· TAPI Version : Ver 2.1 or greater
2.2 How to Gain License Key

1. The user notifies the system supplier of the MAC address of the network card to be inserted into the system that you will install.

2. System supplier creates License Key and then transfers the created file to the user.

3. Store the License file in the folder where you have installed server application program.

4. Start the program.
Operation Environment

TcoreTSP operation is largely classified into two types of Local TcoreTSP and Remote TcoreTSP under Client/Server environment.

2.2.1 Local TcoreTSP

Local TcoreTSP is a structure of 3rd party Client/Server supported by TAPI 2.1. Each Client TAPI application uses RemoteTSP to communicate with tapisrv.exe, svchost.exe by RPC so that it may receive a request for call control command and a call event message. To set environment for the third party Client/Server configuration and complete user registration in Windows 2000 Server, refer to the manual of Microsoft Management Console 2.1.

[image: image1.wmf]svchost

.exe

TcoreWTS

TcoreTSP

CTI Server

Windows

Application

TAPI32 DLL

RPC

TSPI

CS_TAPI

CTI Link(CSTAII)

Client Computer

Resigtry

Tcore

_TM

Remote TcoreTSP

TcoreTSP is not installed in Server, but in each Client PC interfaced with Server. This type of configuration of Server/Client is as in the figure below.

If you run the TAPI Application using TAPI installed in each client PC, TcoreTSP will be notified of a request for call control and an event in the way TcoreTSP inside connects with TcoreWTS Telephony Server installed in CTI Server by means of TCP.

[image: image2.wmf]TcoreWTS

TcoreTSP

CTI Server

Windows

Application

TAPI DLL

CTI Link(CSTAII)

Client Computer

Resigtry

Tcore

_TM

TSPI

TCP

Installation

TcoreTSP program is divided largely into Server (TcoreTSP_Server) program and Client (TcoreTSP_Client). You must complete an environment fit for Server/Client to set up the program (See 2.1 System Requirements).

2.2.2 TcoreTSP_Server

TcoreTSP_Server, as a program for Server, is installed in the way TcoreTSP.tsp file is set up in Window System folder, and Telephony Manager program TcoreTM and Tcore Windows Telephony Server program TcoreWTS are set up in bin folder under user-chosen folder. To install TcoreTSP_Server on your computer, follow the steps below.

[image: image3.png]
Step 01) This window appears initially for installation. Click the Next button to continue.

[image: image4.png]
Step 02) Software License Agreement window appears. Click the Yes button to continue.

[image: image5.png]
Step 03) This window is to choose a folder where to install TcoreCTI_Server. C:\Program Files\tcorets\TcoreCTI_Server is the default. To install to a different folder, click the Browse button and select another folder.

[image: image6.png]
Step 04) This window shows copying program files of TcoreTSP to the folder.

[image: image7.png]Step 05) This window shows Setup has finished installing TcoreTSP_Server on your computer. Click the Finish button to complete Setup.
TcoreTSP_Client

TcoreTSP_Client, program for Client is installed in the way TcoreTSP.tsp file is set up in Window System folder.

[image: image8.png]
Step 01) This window appears initially for installation. Click the Next button to continue.

[image: image9.png]
Step 02) Software License Agreement window appears. Click the Yes button to continue.

[image: image10.png]
Step 03) This window is to choose a folder where to install TcoreCTI_Client. C:\Program Files\tcorets\TcoreCTI_Client is the default. To install to a different folder, click the Browse button and select another folder.

[image: image11.png]
Step 04) This window shows copying program files of TcoreTSP to the folder.

[image: image12.png]
Step 05) This window shows Setup has finished installing TcoreTSP_Client on your computer. Click the Finish button to complete Setup.

Environment Setting

2.2.3 Registration in Control Panel

You must set the environment for TAPI application and TcoreTSP before using them.

· Double-click the Telephony icon in the control panel window.
[image: image13.png]
· Select the Telephony Drivers tab. If you cannot find TcoreTSP Telephony Service Provider in the list box, click the Add button. (If found (installed), click the Configure button to correct the Server information)

[image: image14.png]
· Select TcoreTSP Telephony Service Provider from the list and click the Add button.

[image: image15.png]
· Set the environment for TcoreTSP operation. Refer to <2.3 Operation Environment> for details about the difference between “Local operation” and “Remote operation”.

· If you want to choose “Remote operation”, enter Telephony No. and type for Client to monitor. The types you can choose are as follows:

Unknown, Extension, ACD PN (D-TEL), ACD

· Type in the entries for the IP Address and Port No. in Server info box. If you want to set operation environment to Remote TcoreTSP, select Remote TcoreTSP and enter the extension No of the Client to be registered in the Server. Then click the OK button.
[image: image16.png]
Recording in Registry

Information on Client extension No, Server IP address, port No, etc is recorded in registry so that it may be read whenever needed. Registry structure is described below.

· Location : HKEY_LOCAL_MACHINE\Software\tcorets\

· Configuration :
	Configuration Item
	Description

	device_info
	Includes LineDevice ID information.

	LineN
	Registers Line Device from 0 to n.

Indicates the value as “extension No, deviceType”.

	NumLines
	Defines the total number of Line Device registered.

	network_info
	Records CTI Server IP and Port No.

	AcceptPort
	Port No of Server to be connected (def. : 12000)

	ServerIP
	IP Address of Server to be connected

	option_info
	Records al information needed when CTI Server starts.

	AcceptPort
	Port No of Server to be connected (def. : 12000)

	BaseTime
	Call creating base time managed by CTI Server

	LogFileLines
	Number of max lines to be recorded in log file (def. : 50000)

	LogFileName
	Log file name

	LogLevel
	Decides the level of contents to be recorded in log file.

(0: Error 1: Information 2: Debug)

	MaxClient
	Number of max Clients accessible at a time (def. : 1)

	NumberOfLinks
	Number of links to be connected to exchange (def. : 1)

	ReconnectCount
	Count of automatic reconnections in case of failure in connecting to exchange or disconnection from exchange

	ReconnectTime
	Waiting time for automatic reconnections in case of failure in connecting to exchange or disconnection from exchange

	SwitchHost
	IP address registered in CS1000 exchange

	SwitchId
	ID of CS1000 exchange to be connected to CTI Server

	SwitchName
	Name of CS1000 exchange installed

	SwitchPort
	No of network service port registered in CS1000 exchange (2555)

	Version
	CTI Server version

3. TcoreTM (Telephony Manager) User Manual

3.1 TcoreTM Definition

TcoreTM(Telephony Manager) is a program of telephony resources management needed to register and manage information on recourses used in TcoreWTS CTI. TcoreTM is mainly for registering and managing information needed to start TcoreWTS and devices to be monitored.

3.2 License Authentication

TcoreTM verifies LicenseKey for validity check in running the program and then decides whether to start the program. LicenseKey information is placed in the file of “Licensekey.dat” in the folder TcoreTM execution file is located.

License Key file is created for distribute by the supplier.

** TcoreTM Application and TcoreWTS must be placed in the same folder of a system.
TcoreTM Start

Executing TcoreTM displays the window below.

[image: image17.png]

3.2.1 TcoreTM Configuration Information

TcoreTM is configured as below.

· Options : To register and manage information needed to start TcoreWTS.

· Devices : To register and manage information on execution number for TcoreWTS to monitor.
TcoreTM – Options Items

	Items
	Description
	Default

	IP Address
	IP address of a system where TcoreWTS is installed
	

	Port No
	Port No. to open for TcoreWTS to connect to client
	12000

	Switch Network Information

	Name
	Specific name of an exchange defined by a user
	CS1000

	SwitchID
	Specific ID of an exchange defined by user
	9901

	IP Address
	IP address defined in a system
	

	Port No
	Port No. opened to connect exchange system to CTI server
	2555

	LogFile Information

	FileName
	Name of a file where to store log information

* If the log file name is defined, the log information will be displayed on the screen.
	NULL

	MaxLines
	Max number of lines needed to store log information in a file
	50000

	LogLevel
	Level of log display

· Error : To display only error information

· Information : To display general information including error information

· Debug : To display all log information
	Information

	Reconnect Information

	Time
	Time to wait for reconnecting when CTI server is disconnected from exchange (Unit : sec)
	3

	Count
	Count of attempts to reconnect

* If the count is over the setting, the program ends automatically.
	5

· Click the OK button to store the entry in the Registry.

TcoreTM – Devices Items

	Items
	Description
	Remarks

	Extension

Information
	To display on list information on device recorded in registry, devices newly recorded in registry, and devices deleted from registry.

** Choosing a specific item from the list displays its contents on the editing screen.
	

	Ext. No
	Extension Number to be registered/deleted
	

	Ext. Type
	Device Type to be registered

· Unknown :

· Extension : single line telephone

· ACDPN : telephone to be connectible to ACD group (D-TEL)

· ACD Group : automatic call distribution group

· RP : Routing Pointer

· Trunk
	

	Operation Button

	Apply
	To add a registered contents to the list
	

	DELETE
	To deleted a deleted device information from the list
	

	OK
	To store in registry information on device displayed on the list
	

	Cancel
	To cancel registered device to be stored
	

3.2.2 Processing Procedures

	Items
	Processing Procedures
	Remarks

	Extension Entry
	1. Enter Ext. No.

2. Select Ext.Type.

3. Click the Apply button to add the information to the list.

4. Click the OK button to input the contents of the list to Registry.
	

	Extension Deletion
	1. Select Extension No to be deleted from the list.

2. Click the Delete button to delete the number from the list.

3. Click the OK button to input the contents of the list to registry.
	

4. TAPI Function List

TAPI Line Device Functions and TcoreTSP-supported functions are listed as below.

	TAPI Functions
	TcoreTSP Support

	lineAccept
	Not Support

	lineAddProvider
	Support (TAPI itself)

	lineAddToConference
	Not Support

	lineAnswer
	Support

	lineBlindTransfer
	Not Support

	lineCallbackFunc
	Support (TAPI itself)

	lineClose
	Support

	lineCompleteCall
	Not Support

	lineCompleteTransfer
	Support

	lineConfigDialog
	Support

	lineConfigDialogEdit
	Support

	lineConfigProvider
	Support (TAPI itself)

	lineDeallocateCall
	Support (TAPI itself)

	lineDevSpecific
	Not Support

	lineDevSpecificFeature
	Support

	lineDial
	Support

	lineDrop
	Support

	lineForward
	Not Support

	lineGatherDigits
	Not Support

	lineGenerateDigits
	Not Support

	lineGenerateTone
	Not Support

	lineGetAddressCaps
	Support

	lineGetAddressID
	Support

	lineGetAddressStatus
	Support

	lineGetAppPriority
	Not Support

	lineGetCallInfo
	Support

	lineGetCallStatus
	Support

	lineGetConfRelatedCalls
	Not Support

	lineGetCountry
	Not Support

	LineGetDevCaps
	Support

	lineGetDevConfig
	Not Support

	TAPI Functions
	TcoreTSP Support

	lineGetIcon
	Not Support

	lineGetID
	Support

	lineGetLineDevStatus
	Support

	lineGetMessage
	Not Support

	lineGetNewCalls
	Not Support

	lineGetNumRings
	Not Support

	lineGetProviderList
	Not Support

	lineGetRequest
	Not Support

	lineGetStatusMessages
	Not Support

	lineGetTranslateCaps
	Not Support

	lineHandoff
	Not Support

	lineHold
	Support

	lineInitialize
	Not Support

	lineInitializeEx
	Support

	lineMakeCall
	Support

	lineMonitorDigits
	Not Support

	lineMonitorMedia
	Not Support

	lineMonitorTones
	Not Support

	lineNegotiateAPIVersion
	Support

	lineNegotiateExtVersion
	Not Support

	lineOpen
	Support

	linePark
	Not Support

	linePickup
	Not Support

	linePrepareAddToConference
	Not Support

	lineRedirect
	Support

	lineRegisterRequestRecipient
	Not Support

	lineReleaseUserUserInfo
	Not Support

	lineRemoveFromConference
	Not Support

	lineRemoveProvider
	Not Support

	lineSecureCall
	Not Support

	lineSendUserUserInfo
	Not Support

	lineSetAppPriority
	Not Support

	lineSetAppSpecific
	Not Support

	lineSetCallData
	Not Support

	TAPI Functions
	TcoreTSP Support

	lineSetCallParams
	Not Support

	lineSetCallPrivilege
	Not Support

	lineSetCallQualityOfService
	Not Support

	lineSetCallTreatment
	Not Support

	lineSetCurrentLocation
	Not Support

	lineSetDevConfig
	Not Support

	lineSetLineDevStatus
	Support

	lineSetMediaControl
	Not Support

	lineSetMediaMode
	Not Support

	lineSetNumRings
	Not Support

	lineSetStatusMessages
	Not Support

	lineSetTerminal
	Not Support

	lineSetTollList
	Not Support

	lineSetupConference
	Support

	lineSetupTransfer
	Support

	lineShutdown
	Support

	lineSwapHold
	Support

	lineTranslateAddress
	Not Support

	lineTranslateDialog
	Not Support

	lineUncompleteCall
	Not Support

	lineUnhold
	Support

	lineUnpark
	Not Support

Refer to MSDN Online library Platform SDK Documentation for further details about each TAPI function supported

4.1 lineAddProvider
The lineAddProvider function installs a new telephony service provider into the telephony system.

LONG WINAPI lineAddProvider(

LPCSTR lpszProviderFilename,
HWND hwndOwner,
 LPDWORD lpdwPermanentProviderID
);
Parameters

lpszProviderFilename
A pointer to a null-terminated string containing the path of the service provider to be added.

hwndOwner

A handle to a window in which any dialog boxes that need to be displayed as part of the installation process (for example, by the service provider's TSPI_providerInstall function) would be attached. Can be NULL to indicate that any window created during the function should have no owner window.

lpdwPermanentProviderID

A pointer to a DWORD-sized memory location into which TAPI writes the permanent provider identifier of the newly installed service provider.

lineAnswer
The lineAnswer function answers the specified offering call.

LONG WINAPI lineAnswer(

HCALL hCall,
LPCSTR lpsUserUserInfo,
 DWORD dwSize
);
Parameters
hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of hCall must be offering or accepted.

lpsUserUserInfo

A pointer to a string containing user-user information to be sent to the remote party at the time the call is answered. This pointer can be left NULL if no user-user information is to be sent. User-user information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol discriminator field for the user-user information, if required, should appear as the first byte of the buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no user-user information is sent to the calling party and dwSize is ignored.

4.2 lineCallbackFunc
The lineCallbackFunc function is a placeholder for the application-supplied function name.

VOID FAR PASCAL lineCallbackFunc(

 DWORD hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);
Parameters

hDevice
A handle to either a line device or a call associated with the callback. The nature of this handle (line handle or call handle) can be determined by the context provided by dwMsg. Applications must use the DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data passed back to the application in the callback. This DWORD is not interpreted by TAPI.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

4.3 lineClose
The lineClose function closes the specified open line device.
LONG WINAPI lineClose(

 HLINE hLine
);
Parameters

hLine
A handle to the open line device to be closed. After the line has been successfully closed, this handle is no longer valid.

4.4 lineCompleteTransfer
The lineCompleteTransfer function completes the transfer of the specified call to the party connected in the consultation call.

LONG WINAPI lineCompleteTransfer(

 HCALL hCall,
 HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode
);
Parameters

hCall
A handle to the call to be transferred. The application must be an owner of this call. The call state of hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application must be an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or proceeding.

lphConfCall

A pointer to a memory location where an hCall handle can be returned. If dwTransferMode is LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in lphConfCall and the application becomes the sole owner of the conference call. Otherwise, this parameter is ignored by TAPI.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses one of the LINETRANSFERMODE_Constants.
4.5 lineConfigDialog
The lineConfigDialog function causes the provider of the specified line device to display a dialog box (attached to hwndOwner of the application) to allow the user to configure parameters related to the line device.

LONG WINAPI lineConfigDialog(

 DWORD dwDeviceID,
 HWND hwndOwner,
 LPCSTR lpszDeviceClass
);
Parameters

dwDeviceID
The line device to be configured.

hwndOwner

A handle to a window to which the dialog box is to be attached. Can be NULL to indicate that any window created during the function should have no owner window.

lpszDeviceClass

A pointer to a null-terminated string that identifies a device class name. This device class allows the application to select a specific subscreen of configuration information applicable to that device class. This parameter is optional and can be left NULL or empty, in which case the highest level configuration is selected.

4.6 lineConfigDialogEdit
The lineConfigDialogEdit function causes the provider of the specified line device to display a dialog box (attached to hwndOwner of the application) to allow the user to configure parameters related to the line device.

LONG WINAPI lineConfigDialogEdit(

 DWORD dwDeviceID,
 HWND hwndOwner,
 LPCSTR lpszDeviceClass,
 LPVOID const lpDeviceConfigIn,
 DWORD dwSize,
 LPVARSTRING lpDeviceConfigOut
);
Parameters

dwDeviceID
The line device to be configured.

hwndOwner

A handle to a window to which the dialog box is to be attached. Can be NULL to indicate that any window created during the function should have no owner window.

lpszDeviceClass

A pointer to a null-terminated string that identifies a device class name. This device class allows the application to select a specific subscreen of configuration information applicable to that device class. This parameter is optional and can be left NULL or empty, in which case the highest level configuration is selected.

lpDeviceConfigIn

A pointer to the opaque configuration data structure that was returned by
lineGetDevConfig (or a previous invocation of lineConfigDialogEdit) in the variable portion of the VARSTRING structure.

dwSize

The number of bytes in the structure pointed to by lpDeviceConfigIn. This value is returned in the dwStringSize member in the VARSTRING structure returned by lineGetDevConfig or a previous invocation of lineConfigDialogEdit.

lpDeviceConfigOut

A pointer to the memory location of type VARSTRING where the device configuration structure is returned. Upon successful completion of the request, this location is filled with the device configuration. The dwStringFormat member in the VARSTRING structure is set to STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig (or a future invocation of lineConfigDialogEdit), the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.7 lineConfigProvider
The lineConfigProvider function causes a service provider to display its configuration dialog box.

LONG WINAPI lineConfigProvider(

 HWND hwndOwner,
 DWORD dwPermanentProviderID
);
Parameters

hwndOwner
A handle to a window to which the configuration dialog box (displayed by TSPI_ProviderConfig) is attached. Can be NULL to indicate that any window created during the function should have no owner window.

dwPermanentProviderID

The permanent provider identifier of the service provider to be configured.

4.8 lineDeallocateCall
The lineDeallocateCall function deallocates the specified call handle.

LONG WINAPI lineDeallocateCall(

 HCALL hCall
);
Parameters

hCall
The call handle to be deallocated. An application with monitoring privileges for a call can always deallocate its handle for that call. An application with owner privilege for a call can deallocate its handle unless it is the sole owner of the call and the call is not in the idle state. The call handle is no longer valid after it has been deallocated.

4.9 lineDevSpecificFeature
The lineDevSpecificFeature function enables service providers to provide access to features not offered by other TAPI functions. The meanings of these extensions are device specific, and taking advantage of these extensions requires the application to be fully aware of them.

LONG WINAPI lineDevSpecificFeature(

 HLine hLine

DWORD dwFeature

LPVOID lpParams

DWORD dwsize);
Parameters

hLine
A handle to the line device.

dwFeature

The feature to invoke on the line device. This parameter uses the PHONEBUTTONFUNCTION_ Constants.

lpParams

A pointer to a memory area used to hold a feature-dependent parameter block. The format of this parameter block is device specific and its contents are passed through by TAPI to or from the service provider.

dwSize

The size of the buffer in bytes.

Remark

DeviceFeature supported is as follows:

· PHONEBUTTONFUNCTION_MSGWAITON

· PHONEBUTTONFUNCTION_MSGWAITOFF

· PHONEBUTTONFUNCTION_DONOTDISTURB

** PHONEBUTTONFUNCTION_DONOTDISTURB performs ON/OFF depending on DND condition of the current line.

4.10 lineDial
The lineDial function dials the specified dialable number on the specified call.

LONG WINAPI lineDial(

 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);
Parameters

hCall
A handle to the call on which a number is to be dialed. The application must be an owner of the call. The call state of hCall can be any state except idle and disconnected.

lpszDestAddress

The destination to be dialed using the standard dialable number format.

dwCountryCode

The country code of the destination. This is used by the implementation to select the call progress protocols for the destination address. If a value of 0 is specified, a service provider-defined default call progress protocol is used

4.11 lineDrop
The lineDrop function drops or disconnects the specified call. The application has the option to specify user-user information to be transmitted as part of the call disconnect.

LONG WINAPI lineDrop(

 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);
Parameters

hCall
A handle to the call to be dropped. The application must be an owner of the call. The call state of hCall can be any state except idle.
lpsUserUserInfo

A pointer to a string containing user-user information to be sent to the remote party as part of the call disconnect. This pointer can be left NULL if no user-user information is to be sent. User-user information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol discriminator field for the user-user information, if required, should appear as the first byte of the buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no user-user information is sent to the calling party and dwSize is ignored.

4.12 lineGetAddressCaps
The lineGetAddressCaps function queries the specified address on the specified line device to determine its telephony capabilities.

LONG WINAPI lineGetAddressCaps(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAddressID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEADDRESSCAPS lpAddressCaps
);
Parameters

hLineApp
The handle to the application's registration with TAPI.

dwDeviceID

The line device containing the address to be queried.

dwAddressID

The address on the given line device whose capabilities are to be queried. An address identifier is permanently associated with an address; the identifier remains constant across operating system upgrades.

dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version number; the low-order word contains the minor version number. This number is obtained by lineNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number can be set to zero if no device-specific extensions are to be used. Otherwise, the high-order word contains the major version number; and the low-order word contains the minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion of the request, this structure is filled with address capabilities information. Prior to calling lineGetAddressCaps, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.13 lineGetAddressID
The lineGetAddressID function returns the address identifier associated with an address in a different format on the specified line.

LONG WINAPI lineGetAddressID(

 HLINE hLine,
 LPDWORD lpdwAddressID,
 DWORD dwAddressMode,
 LPCSTR lpsAddress,
 DWORD dwSize
);
Parameters

hLine
A handle to the open line device.

lpdwAddressID

A pointer to a DWORD-sized memory location where the address identifier is returned. An address identifier is permanently associated with an address; the identifier remains constant across operating system upgrades.

dwAddressMode

The address mode of the address contained in lpsAddress. This parameter uses one and only one of the LINEADDRESSMODE_Constans. You must specify LINEADDRESSMODE_DIALABLEADDR.

lpsAddress

A pointer to a data structure holding the address assigned to the specified line device. The format of the address is determined by dwAddressMode. Because the only valid value is LINEADDRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable number format and is null-terminated.

dwSize

The size of the address contained in lpsAddress.

4.14 lineGetAddressStatus
The lineGetAddressStatus function allows an application to query the specified address for its current status.

LONG WINAPI lineGetAddressStatus(

 HLINE hLine,
 DWORD dwAddressID,
 LPLINEADDRESSSTATUS lpAddressStatus
);
Parameters

hLine
A handle to the open line device.

dwAddressID

An address on the given open line device. This is the address to be queried. An address identifier is permanently associated with an address; the identifier remains constant across operating system upgrades.

lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling lineGetAddressStatus, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.15 lineGetCallInfo
The lineGetCallInfo function enables an application to obtain fixed information about the specified call.

LONG WINAPI lineGetCallInfo(

 HCALL hCall,
 LPLINECALLINFO lpCallInfo
);
Parameters

hCall
A handle to the call to be queried. The call state of hCall can be any state.
lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion of the request, this structure is filled with call-related information. Prior to calling lineGetCallInfo, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.16 lineGetCallStatus
The lineGetCallStatus function returns the current status of the specified call.

LONG WINAPI lineGetCallStatus(

 HCALL hCall,
 LPLINECALLSTATUS lpCallStatus
);
Parameters

hCall
A handle to the call to be queried. The call state of hCall can be any state.

lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful completion of the request, this structure is filled with call status information. Prior to calling lineGetCallStatus, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.17 lineGetDevCaps
The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The returned information is valid for all addresses on the line device.

LONG WINAPI lineGetDevCaps(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEDEVCAPS lpLineDevCaps
);
Parameters

hLineApp
The handle to the application's registration with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version number; the low-order word contains the minor version number. This number is obtained by lineNogotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained by lineNegotiateExtVersion. It can be left zero if no device-specific extensions are to be used. Otherwise, the high-order word contains the major version number; the low-order word contains the minor version number.

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the request, this structure is filled with line device capabilities information. Prior to calling lineGetDevCaps, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.18 lineGetID
The lineGetID function returns a device identifier for the specified device class associated with the selected line, address, or call.

LONG WINAPI lineGetID(

 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 LPVARSTRING lpDeviceID,
 LPCSTR lpszDeviceClass
);
Parameters

hLine
A handle to an open line device.

dwAddressID

An address on the given open line device. An address identifier is permanently associated with an address; the identifier remains constant across operating system upgrades.

hCall

A handle to a call.

dwSelect

Specifies whether the requested device identifier is associated with the line, address or a single call. This parameter uses one and only one of the LINECALLSELECT_Constants.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device identifier is returned. Upon successful completion of the request, this location is filled with the device identifier. The format of the returned information depends on the method used by the device class API for naming devices. Prior to calling lineGetID, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

lpszDeviceClass

A pointer to a null-terminated string that specifies the device class of the device whose identifier is requested. Valid device class strings are those used in the SYSTEM.INI section to identify device classes.
4.19 lineGetLineDevStatus
The lineGetLineDevStatus function enables an application to query the specified open line device for its current status.

LONG WINAPI lineGetLineDevStatus(

 HLINE hLine,
 LPLINEDEVSTATUS lpLineDevStatus
);
Parameters

hLine
A handle to the open line device to be queried.

lpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion of the request, this structure is filled with the line's device status. Prior to calling lineGetLineDevStatus, the application should set the dwTotalSize member of this structure to indicate the amount of memory available to TAPI for returning information.

4.20 lineHold
The lineHold function places the specified call on hold.

LONG WINAPI lineHold(

 HCALL hCall
);
Parameters

hCall
A handle to the call to be placed on hold. The application must be an owner of the call. The call state of hCall must be connected.

lineInitializeEx
The lineInitializeEx function initializes the application's use of TAPI for subsequent use of the line abstraction. It registers the application's specified notification mechanism and returns the number of line devices available to the application. A line device is any device that provides an implementation for the line-prefixed functions in the Telephony API.

LONG WINAPI lineInitializeEx(

 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams
);
Parameters

lphLineApp
A pointer to a location that is filled with the application's usage handle for TAPI.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for this parameter, in which case TAPI uses the module handle of the root executable of the process (for purposes of identifying call handoff targets and media mode priorities).

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device, addresses, or calls, when the application is using the "hidden window" method of event notification (for more information see lineCallbackFunc). This parameter is ignored and should be set to NULL when the application chooses to use the "event handle" or "completion port" event notification mechanisms.

lpszFriendlyAppName

A pointer to a null-terminated text string that contains only displayable characters. If this parameter is not NULL, it contains an application-supplied name for the application. This name is provided in the LINECALLINFO structure to indicate, in a user-friendly way, which application originated, or originally accepted or answered the call. This information can be useful for call-logging purposes. If lpszFriendlyAppName is NULL, the application's module file name is used instead (as returned by the Windows API GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location is filled with the number of line devices available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling this function, to the highest API version it is designed to support (for example, the same value it would pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Artificially high values must not be used; the value must be accurately set. TAPI translates any newer messages or structures into values or formats supported by the application's version. Upon successful completion of this request, this location is filled with the highest API version supported by TAPI, thereby allowing the application to detect and adapt to having been installed on a system with a different version of TAPI.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS containing additional parameters used to establish the association between the application and TAPI (specifically, the application's selected event notification mechanism and associated parameters).

4.21 lineMakeCall
The lineMakeCall function places a call on the specified line to the specified destination address. Optionally, call parameters can be specified if anything but default call setup parameters are requested.

LONG WINAPI lineMakeCall(

 HLINE hLine,
 LPHCALL lphCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode,
 LPLINECALLPARAMS const lpCallParams
);
Parameters

hLine
A handle to the open line device on which a call is to be originated.

lphCall

A pointer to an HCALL handle. The handle is only valid after the LINE_REPLY message is received by the application indicating that the lineMakeCall function successfully completed. Use this handle to identify the call when invoking other telephony operations on the call. The application is initially the sole owner of this call. This handle is void if the function returns an error (synchronously or asynchronously by the reply message).

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format. This pointer can be NULL for non-dialed addresses (as with a hot phone) or when all dialing is performed using lineDial. In the latter case, lineMakeCall allocates an available call appearance that would typically remain in the dialtone state until dialing begins. Service providers that have inverse multiplexing capabilities can allow an application to specify multiple addresses at once.

dwCountryCode

The country code of the called party. If a value of 0 is specified, a default is used by the implementation.

lpCallParams

A pointer to a LINECALLPARAMS structure. This structure allows the application to specify how it wants the call to be set up. If NULL is specified, a default 3.1 kHz voice call is established and an arbitrary origination address on the line is selected. This structure allows the application to select elements such as the call's bearer mode, data rate, expected media mode, origination address, blocking of caller ID information, and dialing parameters.

4.22 lineNegotiateAPIVersion
The lineNegotiateAPIVersion function allows an application to negotiate an API version to use.

LONG WINAPI lineNegotiateAPIVersion(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPLINEEXTENSIONID lpExtensionID
);
Parameters

hLineApp
The handle to the application's registration with TAPI.

dwDeviceID

The line device to be queried.

dwAPILowVersion

The least recent TAPI version the application is compliant with. The high-order word is the major version number; the low-order word is the minor version number.

dwAPIHighVersion

The most recent TAPI version the application is compliant with. The high-order word is the major version number; the low-order word is the minor version number.

lpdwAPIVersion

A pointer to a DWORD that contains the TAPI version number that was negotiated. If negotiation succeeds, this number is in the range between dwAPILowVersion and dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. If the service provider for the specified dwDeviceID supports provider-specific extensions, then, upon a successful negotiation, this structure is filled with the extension identifier of these extensions. This structure contains all zeros if the line provides no extensions. An application can ignore the returned parameter if it does not use extensions.
4.23 lineOpen
The lineOpen function opens the line device specified by its device identifier and returns a line handle for the corresponding opened line device. This line handle is used in subsequent operations on the line device.

LONG WINAPI lineOpen(

 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPHLINE lphLine,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD_PTR dwCallbackInstance,
 DWORD dwPrivileges,
 DWORD dwMediaModes,
 LPLINECALLPARAMS const lpCallParams
);
Parameters

hLineApp
A handle to the application's registration with TAPI.

dwDeviceID

Identifies the line device to be opened. It can either be a valid device identifier or the value:

LINEMAPPER

This value is used to open a line device in the system that supports the properties specified in lpCallParams. The application can use lineGetID to determine the identifier of the line device that was opened.

lphLine

A pointer to an HLINE handle that is then loaded with the handle representing the opened line device. Use this handle to identify the device when invoking other functions on the open line device.

dwAPIVersion

The API version number under which the application and Telephony API have agreed to operate. This number is obtained with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider agree to operate. This number is zero if the application does not use any extensions. This number is obtained with lineNegotiateExtVersion.

dwCallbackInstance

User-instance data passed back to the application with each message associated with this line or with addresses or calls on this line. This parameter is not interpreted by the Telephony API.

dwPrivileges

The privilege the application wants when notified of a call This parameter contains one or more of the LINECALLPRIVILEGE_Constants. For applications using TAPI version 2.0 or later, values for this parameter can also be combined with one or more of the LINEOPENOPTION_Constants.

If the LINEOPENOPTION_SINGLEADDRESS option is specified, then the application is interested only in new calls that appear on the address specified by the dwAddressID member in the LINECALLPARAMS structure pointed to by the lpCallParams parameter (which must be specified).

If LINEOPENOPTION_SINGLEADDRESS is specified but either lpCallParams is invalid or the included dwAddressID does not exist on the line, the open fails with LINERR_INVALADDRESSID.

In addition to setting the dwAddressID member of the LINECALLPARAMS structure to the desired address, the application must also set dwAddressMode in LINECALLPARAMS to LINEADDRESSMODE_ADDRESSID.

The LINEOPENOPTION_SINGLEADDRESS option affects only TAPI's assignment of initial call ownership of calls created by the service provider using a LINE_NEWCALL message. An application that opens the line with LINECALLPRIVILEGE_MONITOR continues to receive monitoring handles to all calls created on the line. Furthermore, the application is not restricted in any way from making calls or performing other operations that affect other addresses on the opened line.

When the LINEOPENOPTION_PROXY option is specified (TAPI 2.0 or higher only), the application must also indicate which specific proxy requests it is prepared to handle. It does so by passing, in the lpCallParams parameter, a pointer to a LINECALLPARAMS structure in which the dwDevSpecificSize and dwDevSpecificOffset members have been set to delimit an array of DWORDs. Each element of this array shall contain one of the LINEPROXYREQUEST_Constants. For example, a proxy handler application that supports all five of the Agent-related functions would pass in an array of five DWORDs (dwDevSpecificSize would be 20 decimal) containing the five defined LINEPROXYREQUEST_ values.

The proxy request handler application can run on any machine that has authorization to control the line device. However, requests are always routed through the server on which the service provider is executing that actually controls the line device. Thus, it is most efficient if the application handling proxy requests (such as ACD agent control) executes directly on the server along with the service provider.

Subsequent attempts, by the same application or other applications, to open the line device and register to handle the same proxy requests as an application that is already registered fail with LINEERR_NOTREGISTERED.

To stop handling requests on the line, the application simply calls lineClose.

Other flag combinations return the LINEERR_INVALPRIVSELECT error.

dwMediaModes

The media type or modes of interest to the application. This parameter is used to register the application as a potential target for incoming call and call handoff for the specified media type. This parameter is meaningful only if the bit LINECALLPRIVILEGE_OWNER in dwPrivileges is set (and ignored otherwise). This parameter uses one or more of the LINEMEDIAMODE_Constants.

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer is only used if LINEMAPPER is used; otherwise lpCallParams is ignored. It describes the call parameter that the line device should be able to provide.

4.24 lineRedirect
The lineRedirect function redirects the specified offering call to the specified destination address.

LONG WINAPI lineRedirect(

 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);
Parameters

hCall
A handle to the call to be redirected. The application must be an owner of the call. The call state of hCall must be offering.
lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format.

dwCountryCode

The country code of the party the call is redirected to. If a value of 0 is specified, a default is used by the implementation.

4.25 lineRemoveFromConference
The lineRemoveFromConference function removes the specified call from the conference call to which it currently belongs. The remaining calls in the conference call are unaffected.

LONG WINAPI lineRemoveFromConference(

 HCALL hCall
);
Parameters

hCall
A handle to the call to be removed from the conference. The application must be an owner of this call. The call state of hCall must be conferenced.

4.26 lineSetLineDevStatus
The lineSetLineDevStatus function sets the line device status. Except for basic parameter validation, it is a straight pass-through to the service provider. The service provider sends a LINE_LINEDEVSTATE message to inform applications of the new state, when set; TAPI does not synthesize these messages.

LONG WINAPI lineSetLineDevStatus(

 HLINE hLine,
 DWORD dwStatusToChange,
 DWORD fStatus
);
Parameters

hLine
Handle to the line device.

dwStatusToChange

One or more of the LINEDEVSTATUSFLAGS_Constants.

fStatus

TRUE (?) to turn on the indicated status bit(s), FALSE (0) to turn off.

4.27 lineSetupConference
The lineSetupConference function sets up a conference call for the addition of the third party.

LONG WINAPI lineSetupConference(

 HCALL hCall,
 HLINE hLine,
 LPHCALL lphConfCall,
 LPHCALL lphConsultCall,
 DWORD dwNumParties,
 LPLINECALLPARAMS const lpCallParams
);
Parameters

hCall
The initial call that identifies the first party of a conference call. In some environments (as described in device capabilities), a call must exist to start a conference call, and the application must be an owner of this call. In other telephony environments, no call initially exists, hCall must be left NULL, and hLine must be specified to identify the line on which the conference call is to be initiated. The call state of hCall must be connected.

hLine

A handle to the line. This handle is used to identify the line device on which to originate the conference call if hCall is NULL. The hLine parameter is ignored if hCall is non-NULL.

lphConfCall

A pointer to an HCALL handle. This location is then loaded with a handle identifying the newly created conference call. The application is the initial sole owner of this call. The call state of hConfCall is not applicable.

lphConsultCall

A pointer to an HCALL handle. When setting up a call for the addition of a new party, a new temporary call (consultation call) is automatically allocated. Initially, the application is the sole owner for this call.

dwNumParties

The expected number of parties in the conference call. This number is passed to the service provider. The service provider is free to do as it pleases with this number: ignore it, use it as a hint to allocate the right size conference bridge inside the switch, and so on.

lpCallParams

A pointer to a LINECALLPARAMS structure containing call parameters to use when establishing the consultation call. This parameter can be set to NULL if no special call setup parameters are desired.

4.28 lineSetupTransfer
The lineSetupTransfer function initiates a transfer of the call specified by the hCall parameter. It establishes a consultation call, lphConsultCall, on which the party can be dialed that can become the destination of the transfer. The application acquires owner privilege to the lphConsultCall parameter.

LONG WINAPI lineSetupTransfer(

 HCALL hCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);
Parameters

hCall
The handle of the call to be transferred. The application must be an owner of the call. The call state of hCall must be connected.

lphConsultCall

A pointer to an hCall handle. This location is then loaded with a handle identifying the temporary consultation call. When setting up a call for transfer, a consultation call is automatically allocated that enables lineDial to dial the address associated with the new transfer destination of the call. The originating party can carry on a conversation over this consultation call prior to completing the transfer. The call state of hConsultCall is not applicable.

This transfer procedure may not be valid for some line devices. The application may need to ignore the new consultation call and unhold an existing held call (using lineUnhold) to identify the destination of the transfer. On switches that support cross-address call transfer, the consultation call can exist on a different address than the call to be transferred. It may also be necessary that the consultation call be set up as an entirely new call, by lineMakeCall, to the destination of the transfer. Which forms of transfer are available are specified in the call's address capabilities.

lpCallParams

A pointer to a LINECALLPARAMS structure containing the call parameters to use when establishing the consultation call. This parameter can be set to NULL if no special call setup parameters are desired.

4.29 lineShutdown
The lineShutdown function shuts down the application's usage of the line abstraction of the API.

LONG WINAPI lineShutdown(

 HLINEAPP hLineApp
);
Parameters

hLineApp
The application's usage handle for the line API.

4.30 lineSwapHold
The lineSwapHold function swaps the specified active call with the specified call on consultation hold.

LONG WINAPI lineSwapHold(

 HCALL hActiveCall,
 HCALL hHeldCall
);
Parameters

hActiveCall
The handle to the active call. The application must be an owner of the call. The call state of hActiveCall must be connected.

hHeldCall

The handle to the consultation call. The application must be an owner of the call. The call state of hHeldCall can be onHoldPendingTransfer, onHoldPendingConference, or onHold.

4.31 lineUnhold
The lineUnhold function retrieves the specified held call.

LONG WINAPI lineUnhold(

 HCALL hCall
);
Parameters

hCall
The handle to the call to be retrieved. The application must be an owner of this call. The call state of hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.
5. TAPI Event List

When TcoreTSP sends event to TAPI using LINEEVENT, the event message will be delivered along with the pointer of TcoreTSP-defined structure including information on call and line. TcoreTSP-defined structure including information on call and line is as below.

typedef struct _DRVLINE

{

HTAPILINE htLine;
// Line Pointer

 LINEEVENT pfnEventProc;
// LineEvent Pointer

 DWORD dwDeviceID;
// Line Device ID

 DWORD dwDNDState; // Do Not Disturb : On (1) or Off (0)

 DWORD dwMsgWaitState // MessageWaiting : On (1) or Off (0)

 * Currently unused

 DWORD dwAgentLoggedOn;

 DWORD dwAgentState;

} DRVLINE;

typedef struct _DRVCALL

{

 HTAPICALL htCall;

// Usual Call handle

 HTAPICALL htConfCall;

// Conferece Call handle

 LONG dwCallID;

// Created Call ID

 Cstring strDN;

// Extension No

 DWORD dwCallState;

// Call state

 DWORD dwCallStateMode;
// Call State Mode

 DWORD
dwMediaMode;
// Line Media Mode

 CString strFlag;

// Conference/Transfer Mode Flag

DWORD dwRequestCmd;

DWORD dwTapiMsgID;
// TAPI Message ID

 DWORD dwEventID;

// Event Message ID

} DRVCALL;

TAPI messages, which include a structure of call and line as above and are supported by TcoreTSP, are sent to TAPI as below.
LINE_APPNEWCALL
The TAPI LINE_APPNEWCALL message is sent to inform an application when a new call handle has been spontaneously created on its behalf (other than through an API call from the application, in which case the handle would have been returned through a pointer parameter passed into the function).

LINE_APPNEWCALL

hDevice = (DWORD) hLine;

dwCallbackInstance = (DWORD) dwInstanceData;

dwParam1 = (DWORD) dwAddressID;

dwParam2 = (DWORD) hCall;

dwParam3 = (DWORD) dwPrivilege;
Parameters

hDevice
The application's handle to the line device on which the call has been created.

dwCallbackInstance

The callback instance supplied when opening the call's line.

dwParam1

Identifier of the address on the line on which the call appears. An address identifier is permanently associated with an address; the identifier remains constant across operating system upgrades.

dwParam2

The application's handle to the new call.

dwParam3

The applications privilege to the new call (LINECALLPRIVILEGE_OWNER or LINECALLPRIVILEGE_MONITOR).

5.1 LINE_CALLSTATE
The TAPI LINE_CALLSTATE message is sent when the status of the specified call has changed. Typically, several such messages are received during the lifetime of a call. Applications are notified of new incoming calls with this message; the new call is in the offering state. The application can use lineGetCallStatus to retrieve more detailed information about the current status of the call.

LINE_CALLSTATE

hDevice = (DWORD) hCall;

dwCallbackInstance = (DWORD) hCallback;

dwParam1 = (DWORD) CallState;

dwParam2 = (DWORD) CallStateDetail;

dwParam3 = (DWORD) CallPrivilege;
Parameters

hDevice
A handle to the call.

dwCallbackInstance

The callback instance supplied when opening the call's line.

dwParam1

The new call state. This parameter must be one and only one of the following LINECALLSTATE_constants.

dwParam2

Call-state-dependent information.

	dwParam1
	dwParam2

	If dwParam1 is
LINECALLSTATE_BUSY,
	dwParam2 contains details about the busy mode. This parameter uses one of the LINEBUSYMODE_constants.

	If dwParam1 is
LINECALLSTATE_CONNECTED,
	dwParam2 contains details about the connected mode. This parameter uses one of the LINECONNECTEDMODE_constants.

	If dwParam1 is
LINECALLSTATE_DIALTONE,
	dwParam2 contains details about the dial tone mode. This parameter uses one of the LINEDIALTONEMODE_constants.

	If dwParam1 is
LINECALLSTATE_OFFERING,
	dwParam2 contains details about the connected mode. This parameter uses one of the LINEOFFERINGMODE_constants.

	If dwParam1 is
LINECALLSTATE_SPECIALINFO,
	dwParam2 contains the details about the special information mode. This parameter uses one of the
LINESPECIALINFO_constants.

	If dwParam1 is
LINECALLSTATE_DISCONNECTED,
	dwParam2 contains details about the disconnect mode. This parameter uses one of the LINEDISCONNECTMODE_constants.

Note In circumstances where a delayed response is appropriate, use LINEDISCONNECTMODE_TEMPFAILURE. Where a blacklisted response is appropriate, use LINEDISCONNECT_BLOCKED. For further information, see LINEDISCONNECTMODE_Constants.

If dwParam1 is LINECALLSTATE_CONFERENCED, dwParam2 contains the hConfCall parameter of the parent call of the conference of which the subject hCall is a member. If the call specified in dwParam2 was not previously considered by the application to be a parent conference call (hConfCall), the application must do so as a result of this message. If the application does not have a handle to the parent call of the conference (because it has previously called lineDeallocateCall on that handle) dwParam2 is set to NULL.

dwParam3

If zero, this parameter indicates that there has been no change in the application's privilege for the call.

If nonzero, it specifies the application's privilege for the call. This occurs in the following situations: (1) The first time that the application is given a handle to this call; (2) When the application is the target of a call handoff (even if the application already was an owner of the call). This parameter uses one of the following LINECALLPRIVILEGE_Constants.

5.2 LINE_DEVSPECIFICFEATURE

The TAPI LINE_DEVSPECIFICFEATURE message is sent to notify the application about device-specific events occurring on a line, address, or call. The meaning of the message and the interpretation of the parameters are device specific.

LINE_DEVSPECIFICFEATURE

hDevice = (DWORD) hLineOrCall;

dwCallbackInstance = (DWORD) hCallback;

dwParam1 = (DWORD) DeviceSpecific1;

dwParam2 = (DWORD) DeviceSpecific2;

dwParam3 = (DWORD) DeviceSpecific3;
Parameters

hDevice

A handle to either a line device or call. This is device specific.

dwCallbackInstance

The callback instance supplied when opening the line.

dwParam1

Device specific.

dwParam2

Device specific.

dwParam3

Device specific.

Remarks
If phone property is changed, the information below will be included in dwParam1 to notification.

DO NOT DISTURB ON
: 0x00000001

DO NOT DISTURB OFF
: 0X00000002

MESSAGE WAITING ON
: 0x00000004

MESSAGE WAITING OFF
: 0x00000008
CTIServer Network Information

Telephony Type

TcoreTSP Guide

1

PAGE
14

_1052263158.ppt

svchost.exe

TcoreWTS

TcoreTSP

CTI Server

Windows

Application

TAPI32 DLL

RPC

TSPI

CS_TAPI

CTI Link(CSTAII)

Client Computer

Resigtry

Tcore_TM

_1055916790

_1052203272.ppt

TcoreWTS

TcoreTSP

CTI Server

Windows

Application

TAPI DLL

CTI Link(CSTAII)

Client Computer

Resigtry

Tcore_TM

TSPI

TCP

